Flow equivalence of diagram categories and Leavitt path algebras
نویسندگان
چکیده
Several constructions on directed graphs originating in the study of flow equivalence symbolic dynamics (e.g., splittings and delays) are known to preserve Morita class Leavitt path algebras over any coefficient field F. We prove that many these results not only independent F, but largely linear algebra altogether. do this by formulating proving generalisations theorems which category F-vector spaces is replaced an arbitrary with binary coproducts, showing for depend ability form direct sums vector spaces. suggest framework developed paper may be useful studying other problems related algebras.
منابع مشابه
Homotopy Categories, Leavitt Path Algebras, and Gorenstein Projective Modules
For a finite quiver without sources or sinks, we prove that the homotopy category of acyclic complexes of injective modules over the corresponding finite-dimensional algebra with radical square zero is triangle equivalent to the derived category of the Leavitt path algebra viewed as a differential graded algebra with trivial differential, which is further triangle equivalent to the stable categ...
متن کاملWeakly Noetherian Leavitt Path Algebras
We study row-finite Leavitt path algebras. We characterize the row-finite graphs E for which the Leavitt path algebra is weakly Noetherian. Our main result is that a Leavitt path algebra is weakly Noetherian if and only if there is ascending chain condition on the hereditary and saturated closures of the subsets of the vertices of the graph E.
متن کاملFlow Invariants in the Classification of Leavitt Path Algebras
We analyze in the context of Leavitt path algebras some graph operations introduced in the context of symbolic dynamics by Williams, Parry and Sullivan, and Franks. We show that these operations induce Morita equivalence of the corresponding Leavitt path algebras. As a consequence we obtain our two main results: the first gives sufficient conditions for which the Leavitt path algebras in a cert...
متن کاملAlgebras of Quotients of Leavitt Path Algebras
We start this paper by showing that the Leavitt path algebra of a (row-finite) graph is an algebra of quotients of the corresponding path algebra. The path algebra is semiprime if and only if whenever there is a path connecting two vertices, there is another one in the opposite direction. Semiprimeness is studied because, for acyclic graphs, the Leavitt path algebra is a Fountain-Gould algebra ...
متن کاملThe Leavitt path algebras of arbitrary graphs
We extend the notion of the Leavitt path algebra of a graph E to include all directed graphs. We show how various ring-theoretic properties of these more general structures relate to the corresponding properties of Leavitt path algebras of row-finite graphs. Specifically, we identify those graphs for which the corresponding Leavitt path algebra is simple; purely infinite simple; exchange; and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2023
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2022.107232